
Cantori for symplectic maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 L1093

(http://iopscience.iop.org/0305-4470/23/21/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) L1093-L1100. Printed in the UK 
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Cantori for symplectic maps 
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Abstract. We construct invariant sets for the 2d-dimensional generalization of the sawtooth 
map which are semi-conjugate to any incommensurate rotation vector. When d s 2  we 
show that these are Cantor sets. These invariant sets are hyperbolic, and we give a structural 
stability argument to show the existence of cantori for a non-trivial class of smooth 
symplectic maps. 

Aubry and Mather [ l ,  21 show that orbits with any rotation number exist for area- 
preserving twist maps. Extension of this theory to symplectic maps with more than 
one degree of freedom appears to be a difficult task. Bangert [3] and Mather [4] have 
results about the set of rotation vectors for orbits of minimal action; however, an 
example of Hedlund [ 5 ]  shows that in general one cannot hope to obtain minimizing 
orbits with all rotation vectors. Bernstein and Katok [ti] show that for maps close 
enough to integrable, the minimizing periodic orbits satisfy some regularity properties 
which are sufficient to allow the existence of a limiting orbit as the rotation vector 
approaches any limit. However, they cannot prove anything about the rotation vectors 
of the limiting orbits. 

Here we consider the opposite situation, when the ‘potential’ dominates the ‘kinetic’ 
energy. In this limit, the minimizing orbits of an area-preserving map approach the 
minimizing orbits of the ‘sawtooth mapping’ which is a piecewise linear, discontinuous 
mapping. As was shown independently by Aubry and Percival [7-lo], an explicit 
formula can be obtained for orbits of the sawtooth mapping with irrational rotation 
number; these are dense on Cantor sets, and are called cantori. We consider the 
generalization of the sawtooth mapping to d degrees of freedom, and obtain a formula 
for a set of orbits with incommensurate rotation vectors. When d d 2 ,  these are shown 
to cover Cantor sets. 

We use the structural stability of hyperbolic sets to show that the cantori persist 
under perturbations of the mapping which can be arbitrary in a region around the 
discontinuity, but which are C’ small on the cantorus. 

Let x = (xl , x2, . . . , x d )  represent a configuration point in I W ~ .  Consider a mapping 
with the generating function 

A 
h ( x ,  x ’ ) = ~ ~ x - x ’ ~ 2 + - { X ) f Q { X }  2 (1) 
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where x, X 'E  Rd, Q is a positive definite matrix, A > 0, superscript t represents transpose, 
and {x} represents a fractional part of x with respect to the group of translations by 
integer vectors, Zd. For definiteness, choose some a = ( a , ,  . . . , a d )  with al E {+, -} and 
define the fractional part 

{X}g = x, - [x, +flU1 (2) 

where [XI+ ([XI-) is the right (left) continuous integer part. A functionf(x) for which 
f (x  + a&) +f(x)  as E + 0 for all x and E > 0, will be called a-continuous. The fractional 
part { x } ~  is a-continuous. 

A trajectory generated by (1) consists of a configuration (x', x'+', . . . , x'), s < t 
which is a stationary point of the action 

' - 1  

W[XS, XS+', . . . , x'] = 1 h(x', XI+ ' ) .  
I = '  

Differentiation yields the second difference equation 

AQ{X') (3) X'+l -2x' t x ' - l  = 

provided none of the configuration points falls on the discontinuities. This defines a 
map S : (x'-', x') -+ (x', x'+l) which is the 2d-dimensional generalization of the sawtooth 
mapping [lo]. If Q is diagonal the components of (3) decouple and it can be treated 
as a set of d area-preserving sawtooth mappings; however, in general, (3) cannot be 
decoupled. 

Consider an incommensurate rotation vector w E Rd (i.e. k w Z V k  E Zd\O). We 
look for invariant sets with this rotation vector given by a function x : Rd + Rd where 
x( 8 + k) = x( e)+  k, V k  E Zd,  and such that the orbit of x( e,) is x( Bo+ w t ) ,  V'eoE Rd and 
t E Z. By (3), x( e )  must satisfy 

(4) ~ ( e  + w )  - 2x(e) +x(e  - U) = AQ{x(~)) .  

Such sets exist if the parameter A is large enough as is shown by the following. 

Proposition. There exists an L > 0 such that for A > L and any incommensurate w E Rd, 
there is an invariant set &, of the sawtooth map of the form 

fi,,, ={(x'(e), x'(e+w))l e m d ,  V E  {+, - l d }  ( 5 )  

such that xu(  0 + k) = xu( e )  + k V k  E Z d  and that xu(  Bo+ w t )  is an orbit for all 8, E Rd 
and a E {+, - } d .  The solution is given by 

x"(e)= e-c B- 'b (n)B{B+nw}"  
n 

where B is an orthogonal matrix which diagonalizes Q, and b ( n ) ,  n E Z, are diagonal 
matrices of the form 

b( n) = diag( trip;'"'). (7) 

with ai and pi positive (see (8)). 

Proof: We first show that a solution to (4) can be found of the form ( 6 )  under the 
assumptions that the solution satisfies [x'( e ) ]  = [e] and that x( 6 )  has no points on 
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the discontinuity set of { }. Let x u (  e )  = 0 + $ ( e ) ;  by assumption { x u (  e ) }  is independent 
of the choice of fractional part, so choose the a-continuous one: 

{ x ' ( e ) }  = x U ( e )  - [ x U ( e ) l u  

= e + $ ( e ) - [ e l U  
= {elu + +(e ) .  

Therefore by (4) (I, must satisfy 

$ ( e  + U )  + 440 - 0 )  = AQ[{eIu + $(ell. 
A solution to this can be obtained from the ansatz 

a2 

$ ( e ) =  a ( n ) { e + n w } '  
n=-cc 

providing 
a ( n  - 1 ) - 2 a ( n ) + a ( n +  1) = A Q a ( n )  n # O  

a ( - 1 )  - 2 a ( 0 )  + a(  1 )  = A Q ( I +  a(0)) .  

Since Q is symmetric, it can be diagonalized by an orthogonal coordinate change. Let 
Q = B-IDB, where B' = B-' and D = diag(qi) is a diagonal matrix; since Q is positive 
definite, the entries qi are positive reals. Defining b ( n )  = - B a ( n ) B - ' ,  then the solution 
for b( n )  which decays as n + *CO is given by (7)  providing 

So we obtain x( e )  of the form ( 6 )  providing the assumptions [ x u (  e ) ]  = [ e ] ,  and xu( e )  
has no points on the discontinuity set are satisfied. To verify this we note the following 
properties of (6). 

( a )  xu(  e )  is o-continuous. This follows because for E > 0, xu( 8 + VE) + x u (  0)  as 
E + 0, since { 

( b )  The derivative of x " ( 0 )  vanishes at all points of continuity. Since the series 
for x(e) is uniformly convergent, its derivative can be computed term by term. 
Evaluating the derivative of ( 6 )  at a point where { e +  n u } u  is continuous V n  gives 

is o-continuous. 

ax 
ae n 
- = I  - B - ' C  b ( n ) B  = O  

which follows from the sum 

Thus all changes in xu(  0 )  occur in the discontinuities of { 8 + that is the points 
e, + nu, = m - f 

for any integer m. Such points are dense. 

m - nu, - 1 / 2 ,  holding all the other e,, i # j ,  fixed, is 
( c )  xy(e) is a monotonic function of e,. The jump in x u  across a point 0, = 

A x ( n ;  j ) =  B - ' b ( n ) B e J  VOi, i#j and a (10) 
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where e’ is the unit vector in the j direction. Thus (e’, Ax(n;j))>O, so x,” strictly 
increases across such a discontinuity. Since the discontinuities are dense, x,” increases 
between almost every pair of values of 6,. 

( d )  x(0 )  can be written as a sum of monotone vectors, each depending on a 
single e,: 

d 

x‘(e) = 1 xJ(ej) 

x’( e,) = e, - B-’ 1 b( n){ e, + 
, = I  

e’. 
n 

We call a vector function x J (  e,) monotone if (e’, x’( 6, + 6 )  - xJ(  e,)) 3 0, V6 3 0. This 
is true for (11) as follows from (10). 

A bound on the norm of xJ(  8,) can be obtained by noting that x’(0) = 0 and at 
any other point its value is the sum of the jumps Ax(n; j )  for those n corresponding 
to discontinuities in { c p  + nu,} for cp E [0, e,]. Providing le,( < 1/2, the discontinuity 
corresponding to n = 0 does not contribute. Furthermore x’(8,) is odd almost 
everywhere, indeed x’( 6, + E )  + -x’(-O, - E )  as E + O+, so only half of the remaining 
discontinuities contribute, thus 

Thus from (11) the norm of x(e )  itself is bounded by 

for Ie,I<f. d d  
2 i = l  

I x (e ) ls -  c (l-a , )  

This implies x(  0) is certainly in the fundamental domain (-4, f ) d  when 8 is, providing 
A satisfies 

which completes the proof. 0 

An example for d = 2 is shown in figure 1. Here we chose A q  = (0.02,0.03), and let 
B be a rotation by an angle 0.5. The rotation vector is w = ( (3  -v’5)/2, v’2 - 1). Values 
for 8 were taken on a rectangular grid. 

For d = 1, (13) implies that the solution ( 6 )  is valid for all A >O.  For d > 1, this is 
not necessarily the case, and numerical calculation for d = 2  shows that if the qi are 
too small then xu(@) can cross the discontinuity and therefore will not represent a 
valid solution. In practice the bound (13) is extremely weak; for d = 2 the set appears 
to remain in the fundamental domain until A min(qi)-O(10-3). Even in this case, 
however, it is possible to modify the fundamental domain (-f , $ ) d  used in the definition 
of {x} to obtain a mapping for which ( 6 )  is valid for any A t. 

Note that ( 6 )  also gives invariant sets with commensurate rotation vector, whose 
topological form is different; in this letter we concentrate on the incommensurate case. 

We now consider the topological form of the set f i w .  The sawtooth map commutes 
with the translations (x, x’) + ( x +  m, x’+ m), for m E Zd,  so it can be considered as a 
map of I W ~  x I W ~ / Z ~  to itself. 

f This follows from the proposition below: choose the boundaries of the fundamental domain to run in the 
gaps between the y ’ ( 0 ,  *) curves and the y2(0 ,  i) curves. 
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Figure 1. Configuration space projection of a cantorus of the four-dimensional sawtooth 
map. 

Proposition. Let w be incommensurate and M,,, = &,/Zd, with G,,, given by ( 5 ) .  Then 
for d s 2, M, is a Cantor set. 

Roo$ A Cantor set is a topological space which is non-empty, compact, totally 
disconnected and has no isolated points. Since w is incommensurate, it follows from 
property ( a )  above that for all d, M,,, is non-empty, closed and has no isolated points. 
Furthermore, since the b ( n )  are summable, M, is bounded. So it remains to prove 
that M is totally disconnected. 

For d = 1, this follows from the fact that the jumps (10) are positive and that w is 
incommensurate. 

For d = 2, consider a point 6, = njwj + 1/2, j = 1,2. The vectors Ax(  n, ; j )  given by 
(10) span an area of positive orientation. This area is the same as that spanned by 
B A x ( n j ; j )  since B e S O ( 2 ) .  Letting Q be the rotation angle, this area is given by the 
cross product 

(14) 
Define two curves y l ( j ,  cl) by joining the gaps in the points of x " ( j w ,  + 1/2, 02),  for 
02e  R and r 2 e  {+, -} with straight lines. By ( c )  these curves are graphs over the x2 
axis. Similarly define the graphs y 2 ( j ,  r2) over xI. The positivity of (14) for all n2 
implies that y'(nl ,  +) and y l ( n , ,  -) do not intersect, and similarly for y2. Then ( c )  
implies that the four curves y i ( n i ,  *), as shown in figure 2, separate the points of M, 
with Oi > niwi and Bi < niwi where i = 1,2. 

Since wl and w 2  are irrational, this implies that M, is totally disconnected, thus it 

B A x ( n l  ; 1) x B A x ( n 2 ;  2) = ala2[p;ln11p;"5 cos2 Q +p;l"llp;'"2'sin2 cp]> 0. 

is a Cantor set. 0 
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Figure 2. Disconnectedness of the set M,. 

We believe that this result is also true for d > 2, but did not succeed in proving it. 
We now show that many smooth symplectic maps have invariant sets topologically 

equivalent to those found for the sawtooth map. Although the sawtooth map is 
discontinuous, the invariant sets M ,  avoid a neighbourhood of the discontinuity set 
so the map can be modified there in any way leaving M, unchanged. In particular, 
there are C“ symplectic maps with the same M,. Since the invariant sets of the 
sawtooth map are hyperbolic, with hyperbolicity constant min( p i ) ,  they are structurally 
stable, that is M, persists for all perturbations of the map which are C’ small enough 
in a neighborhood of M,; see, e.g., [ l l ] .  This allows us to deduce existence of 
topologically equivalent invariant sets for an open set of smooth symplectic maps of 
Rd x R d / Z d .  This set includes non-trivial examples, as in the following. 

Theorem. Suppose f is a symplectic map with generating function h ( x ,  x ’ )  = 
~ l x - x ’ 1 2 + A V ( x ) ,  X E R ~ ,  such that V ( x + k ) =  V ( x ) V k e Z d ,  and V has a non-degen- 
erate local minimum with D3 V ( x )  = 0 at this minimum (e.g. because of symmetry). 
Then there exist invariant sets topologically equivalent to Mu for all w,  provided A is 
large enough. 

Boo$ Without loss of generality let x = 0 be the minimum of V ;  and write the quadratic 
part of V there as ix ‘Qx.  For 8 in the fundamental domain, (12) implies that the 
invariant set Mu of the sawtooth map is contained within the region R :  {Ixl< 
d 2 / A  min(q,)IxeRd}. In this region A V ( x )  is C2 close to its quadratic part, and so f 

0 is C’ close to the sawtooth mapping. Hence Mu persists for large enough A. 

The above example can be modified to h ( x ,  x ’ )  = T ( x  - x ‘ )  + A [  V ( x )  + W ( x ’ ) ] ,  
where T represents any positive definite quadratic form (paper in preparation). We 
believe that the restriction D3 V = 0 is not necessary, since f would still be CO close 
to the sawtooth map, S, on R and the relative change in the derivative (Df DS-’ - I )  
would be small. 

There are several remaining questions. 
( 1 )  Is M, a Cantor set when d > 2? We suspect that this is the case. In particular, 

since M ,  is hyperbolic and its orbits are semi-conjugate to a rotation, it has zero 
Hausdorff dimension [ 121. 
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(2) Can the theorem be generalized to any V ( x )  with a non-degenerate minimum 
for which D3 V # O? Can one generalize to examples with a more general dependence 
of h on ( x ,  x ’ )?  

(3) Do these orbits globally minimize the action? It is clear that they are local 
minima; however, we have not shown that variations which move a configuration point 
across the discontinuity necessarily do not decrease the action. Even if M,,, consists 
of orbits of minimum action for the sawtooth do the perturbed sets for nearby maps 
consists of minimizing orbits? For d = 1, Mather has given examples where the continu- 
ation of a hyperbolic Aubry-Mather set by structural stability no longer consists of 
minimizing orbits [ 131. 

(4) Can these Cantor sets be regarded as the ghosts which remain when invariant 
tori break up? Does every invariant torus have such a ghost, or something similar? In 
figure 3 we display a periodic orbit of the four-dimensional FroeschlC mapping E141 
with primitive period 78635. When the parameter A is small this orbit appear to nearly 
uniformly cover the fundamental domain; it is a close approximation to an invariant 
torus with incommensurate frequency. As A increases the density of points becomes 
non-uniform, and low density regions begin to form. It appears that when A is larger 
these low density regions will be empty, and the orbit will cover a Cantor set. 
Unfortunately in this situation the orbit becomes highly unstable, and impossible to 
follow numerically. 

Figure 3. Configuration space projection of a periodic orbit with rotation vector 
(17556/78635, 51016/78635) for the four-dimensional FroeschlC map with parameters 
(a, b, c )  = (0.5,0.35,0.02), corresponding to A q  = (0.483,0.327). 
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